\(\int \cos (c+d x) (b \cos (c+d x))^{3/2} \, dx\) [81]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 67 \[ \int \cos (c+d x) (b \cos (c+d x))^{3/2} \, dx=\frac {6 b \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {2 (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d} \]

[Out]

2/5*(b*cos(d*x+c))^(3/2)*sin(d*x+c)/d+6/5*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*
d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {16, 2715, 2721, 2719} \[ \int \cos (c+d x) (b \cos (c+d x))^{3/2} \, dx=\frac {2 \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}} \]

[In]

Int[Cos[c + d*x]*(b*Cos[c + d*x])^(3/2),x]

[Out]

(6*b*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]) + (2*(b*Cos[c + d*x])^(3/2)*Sin[
c + d*x])/(5*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rubi steps \begin{align*} \text {integral}& = \frac {\int (b \cos (c+d x))^{5/2} \, dx}{b} \\ & = \frac {2 (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {1}{5} (3 b) \int \sqrt {b \cos (c+d x)} \, dx \\ & = \frac {2 (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {\left (3 b \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 \sqrt {\cos (c+d x)}} \\ & = \frac {6 b \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {2 (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.97 \[ \int \cos (c+d x) (b \cos (c+d x))^{3/2} \, dx=\frac {(b \cos (c+d x))^{5/2} \left (6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\sqrt {\cos (c+d x)} \sin (2 (c+d x))\right )}{5 b d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[Cos[c + d*x]*(b*Cos[c + d*x])^(3/2),x]

[Out]

((b*Cos[c + d*x])^(5/2)*(6*EllipticE[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*Sin[2*(c + d*x)]))/(5*b*d*Cos[c + d*
x]^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(212\) vs. \(2(83)=166\).

Time = 2.67 (sec) , antiderivative size = 213, normalized size of antiderivative = 3.18

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{2} \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(213\)

[In]

int(cos(d*x+c)*(cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2*(-8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6
+8*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(
1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.16 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.33 \[ \int \cos (c+d x) (b \cos (c+d x))^{3/2} \, dx=\frac {2 \, \sqrt {b \cos \left (d x + c\right )} b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 i \, \sqrt {2} b^{\frac {3}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} b^{\frac {3}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{5 \, d} \]

[In]

integrate(cos(d*x+c)*(b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/5*(2*sqrt(b*cos(d*x + c))*b*cos(d*x + c)*sin(d*x + c) + 3*I*sqrt(2)*b^(3/2)*weierstrassZeta(-4, 0, weierstra
ssPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*b^(3/2)*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \cos (c+d x) (b \cos (c+d x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)*(b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos (c+d x) (b \cos (c+d x))^{3/2} \, dx=\int { \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \cos \left (d x + c\right ) \,d x } \]

[In]

integrate(cos(d*x+c)*(b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c))^(3/2)*cos(d*x + c), x)

Giac [F]

\[ \int \cos (c+d x) (b \cos (c+d x))^{3/2} \, dx=\int { \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \cos \left (d x + c\right ) \,d x } \]

[In]

integrate(cos(d*x+c)*(b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c))^(3/2)*cos(d*x + c), x)

Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) (b \cos (c+d x))^{3/2} \, dx=\int \cos \left (c+d\,x\right )\,{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

[In]

int(cos(c + d*x)*(b*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)*(b*cos(c + d*x))^(3/2), x)